Myogenic transdifferentiation of menstrual blood-derived cells.

نویسندگان

  • M Toyoda
  • Ch Cui
  • A Umezawa
چکیده

Cells with myogenic potential are present in many tissues, and these cells readily form skeletal muscle in culture. We here focus on menstrual blood as another cell source for regenerative medicine. Menstrual blood-derived cells have high replicative ability, similar to progenitors or stem cells, and transdifferentiate or meta-differentiate into myocytes in vitro at unexpectedly high frequencies. This unique phenotype can be explained by histological and embryological aspects of the endometrium. The remarkable myogenic capability of these cells enables us to "rescue" dystrophied myocytes of the mdx model of Duchenne muscular dystrophy through cell fusion and transdifferentiation. Endometrial cells supplied as a form of menstrual blood-tissue mixture can be used for cell-based therapy in addition to a place for embryo implantation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Potential of Menstrual Blood-Derived Stem Cells in Differentiation to Epidermal Lineage: A Preliminary Report

BACKGROUND Menstrual blood-derived stem cells (MenSCs) are a novel source of stem cells that can be easily isolated non-invasively from female volunteered donor without ethical consideration. These mesenchymal-like stem cells have high rate of proliferation and possess multi lineage differentiation potency. This study was undertaken to isolate the MenSCs and assess their potential in differenti...

متن کامل

ارزیابی توان تمایز سلول های بنیادی مشتق از خون قاعدگی به سلولهای قلبی در شرایط آزمایشگاهی

Background and Objective: In recent decades, stem cell therapy has been introduced as a novel therapeutic approach for patients suffering from cardiac disorders. Recently, identification of menstrual blood-derived stem cells (MenSCs) as a unique source of stem cell with some characteristics as well as ease of access, high proliferative ability and renewability has created enormous promise for c...

متن کامل

Skeletal Myogenic Progenitors Originating from Embryonic Dorsal Aorta Coexpress Endothelial and Myogenic Markers and Contribute to Postnatal Muscle Growth and Regeneration

Skeletal muscle in vertebrates is derived from somites, epithelial structures of the paraxial mesoderm, yet many unrelated reports describe the occasional appearance of myogenic cells from tissues of nonsomite origin, suggesting either transdifferentiation or the persistence of a multipotent progenitor. Here, we show that clonable skeletal myogenic cells are present in the embryonic dorsal aort...

متن کامل

Myogenic fusion of human bone marrow stromal cells, but not hematopoietic cells.

Following marrow transplantation in both patients and animals, cells containing donor nuclei have been detected in a variety of nonhematopoietic tissue. Whether this phenomenon represents transdifferentiation of marrow-derived cells, infiltration of blood cells, or cell fusion is still controversial. In muscle, where cell fusion occurs during normal myogenesis, fusion of marrow-derived cells wi...

متن کامل

Apoptosis of Rat Adipose-Derived Stem Cells during Transdifferentiation to Schwann-Like Cell

Background: Adipose-derived stem cells (ADSCs) are a population of pluripotent cells used for tissue engineering purposes. The main purpose of the present study was to transdifferentiate the ADSCs to Schwann-like cells and to determine the intensity of apoptosis in ADSCs during the transdifferentiation process. Methods: ADSCs were isolated from the inguinal adipose tissue of adult rats and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta myologica : myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology

دوره 26 3  شماره 

صفحات  -

تاریخ انتشار 2007